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Abstract

The structure- and fluid-borne vibro-acoustic power spectra induced by turbulent fluid flow over the walls of a

continuous 901 piping elbow are computed. Although the actual power input to the piping by the wall pressure

fluctuations is distributed throughout the elbow, equivalent total power inputs to various structural wavetypes

(bending, torsion, axial) and fluid (plane-waves) at the inlet and discharge of the elbow are computed. The powers at the

elbow ‘‘ports’’ are suitable inputs to wave- and statistically-based models of larger piping systems that include the

elbow. Calculations for several flow and structural parameters, including pipe wall thickness, flow speed, and flow

Reynolds number are shown. The power spectra are scaled on flow and structural–acoustic parameters so that levels for

conditions other than those considered in the paper may be estimated, subject to geometric similarity constraints (elbow

radius/pipe diameter). The approach for computing the powers (called CHAMP – combined hydroacoustic modeling

programs), which links computational fluid dynamics, finite element and boundary element modeling, and efficient

random analysis techniques, is general, and may be applied to other piping system components excited by turbulent

fluid flow, such as U-bends and T-sections.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Noise sources due to turbulent fluid flow through piping elbows are difficult to quantify. As the fluid flows through

an elbow, strong pressure gradients develop, which generate secondary flow fields through and downstream of the

elbow, such as those shown in Fig. 1. Wall pressure fluctuations beneath turbulent pipe boundary layer flow excite the

piping walls, which then vibrate and radiate sound into the internal (and external) acoustic fluid. The wall pressures

therefore cause structure-borne and fluid-borne sound waves to emanate from the inlet and outlet of the elbow. Several

researchers have investigated the fluid-dynamic and structural–acoustic behavior of fluid-filled piping systems, see for

example, the review articles by Wiggert and Tijsseling (2001) and Hambric et al. (2002). Papers which focus specifically

on elbow excitation and response are less common, and tend to examine the structural–acoustic or fluid-dynamic
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Nomenclature

A cross-sectional area of the fluid or structure

a mean radius of pipe wall

B, b physical and modal damping matrices

C(o), c(o) physical and modal attached structure

matrices

cB, cs, co bending, shear, and acoustic sound speeds

D pipe diameter

E Young’s modulus

E [ ] expected value

f circular frequency (Hz)

F1 Menter blending function

F(o) applied force vector

G shear modulus

Gpp, Gvv wall pressure and pipe vibration CSDs

GFF(o), Gff(o) physical and modal force CSD

matrices

Gpower power in various wavetypes

Gcc(o) modal amplitude cross-spectral density ma-

trix

H(o), h(o) physical and modal frequency response

functions

hi impulse response function

H frequency response function

J1 Bessel function of the first kind

J polar moment of inertia

k wavenumber

k turbulence kinetic energy

kc, kB, kp, kz convective, bending, cutoff, and axial

wavenumbers

K, k physical and modal stiffness matrices

L elbow length (with sections of upstream and

downstream piping)

‘ turbulence length scale

M, m physical and modal mass matrices

n circumferential harmonic

p wall pressure

P1, P2 empirical power formulae coefficients

R correlation function

ReD Reynolds number, UoD/n
t time

u local velocity

Uo, Uc, Uedge bulk, convective, and edge flow

velocities

v structural vibration (velocity)

w displacement

x; x
0

response and excitation locations

y distance from pipe wall

y+ dimensionless distance from pipe wall

Z impedance

z axial direction

Z(o), z(o) physical and modal impedance matrices

a1,a3 TBL decay coefficients

G normalized TBL cross-spectral density func-

tion

d boundary layer thickness

dn boundary layer displacement thickness

D1, D3 separation distances in streamwise and

cross-flow directions

e turbulence dissipation rate

y circumferential angle

m dynamic viscosity

n kinematic viscosity

n separation vector between loaded points

r cross-covariance

rs, ro structural and fluid density

so2 Prandtl number (closure coefficient)

t time delay

fpp(o) wall pressure autospectrum

/pp(n,o) wall pressure cross-spectral density (CSD)

jm mode shape

u matrix of mode shapes

c(o) vector of modal amplitudes

o radial frequency (rad/s)

o dissipation per unit turbulent kinetic energy
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mechanisms individually. This paper, therefore, describes the coupled fluid-dynamic and structural–acoustic behavior

of flow-excited elbows.

Piping wall motion in the radial, longitudinal, or torsional directions is typically characterized using its

circumferential harmonic components, where for example,

wðy; z; tÞ ¼
X1
n ¼ 1

WncosðnyÞ þ
X1
n ¼ 1

Vn sinðnyÞ

 !
e�ikzzþiot;

where w(y, z, t) is the pipe wall motion as a function of axial location z and angular location y, Wn, and Vn are

coefficients for each harmonic n, kz is the axial wavenumber, and o is the radial frequency. When n=0, the pipe cross-

section ‘‘breathes’’, with no phase variation about its circumference (the sin term goes to zero and the cos term is

constant at 1 for all y). For flexural motion when n=1, the entire cross-section moves transversely, and the pipe

effectively acts as a beam in flexure. For flexural motion where n41, the pipe wall deforms, and the so-called ‘‘lobar’’

modes occur. Within the pipe, acoustic pressure fluctuations in the fluid propagate as planar waves below the cut-on

frequency of modes across the fluid cross-section. In this article, only plane acoustic waves are considered.
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Fig. 1. Secondary flow pattern at outlet of pipe elbow; contour is of total local velocity normalized to bulk velocity. Bottom of plot is

at the inside of the bend.
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Everstine (1986) derived a low-frequency finite element modeling technique that simulates plane acoustic wave

propagation in the working fluid and bending (n=1) and longitudinal waves in the piping. The formulation was

validated against measurements of structural–acoustic transfer functions of an oil-filled copper pipe with an elbow

made by Davidson and Smith (1969, 1972). Higher frequency structural–acoustic modeling of pipes with elbows has

been discussed by Manning (2002), who used statistical energy analysis (SEA) to investigate the transfer of energy

between piping wall modes and acoustic fluid modes.

Transfer matrix techniques, where sections of piping and other components (pumps and valves, for example) are

modeled using matrices of transmission and reflection coefficients, have been investigated by several authors. Lesmez

et al. (1990) and Hwang (2002), among others, have used impedance matrices to relate fluctuating forces (or pressures)

and velocities at discrete frequencies. Coupling between all structural and acoustic wavetypes may be included in the

matrices. Other authors, such as Stokes et al. (2001), use wave transmission line (WTL) approaches, where the matrices

relate wave amplitudes (instead of impedances) of structural and acoustic wavetypes. In either case, full coupling

between all wavetypes may be included in the analysis. For example, bending waves incident on an elbow could

transmit compressional waves into the outlet of the elbow. The advantage to using transfer matrix techniques is that

once assembled, the models are easy to solve. However, the scattering matrices for each of the components in the

modeled system must be generated prior to using the technique. Analytic techniques, finite element models, or

measurements may all be used to generate the matrices. For example, Conti et al. (2001) measured scattering matrices

(suitable for use in the WTL approach) of a fluid-filled elbow.

Various experimental and numerical studies have been made of the turbulent flow within elbows. Enayet et al. (1982)

measured the steady and unsteady flow within and downstream of an elbow with a radius of curvature to diameter ratio

(R/D) of 2.8 at a Reynolds number (based on bulk velocity and pipe diameter) of 43 000. Kawamura and Takahashi

(1996) measured similar quantities for a much tighter elbow (R/D=0.55) and at higher Reynolds numbers (up to

1 000 000). Comparing the data between the two studies, the tighter radius elbow generated significantly higher

downstream turbulence intensities. In both cases, the secondary flow and turbulence generated by the elbows decayed as

the flow traveled away from the elbow, eventually returning to fully developed straight pipe flow.

Anwer and So (1993) measured the behavior of flow through a U-bend (a 1801 elbow) with an R/D of about 6. Later,

Boersma and Nieuwstadt (1996) performed numerical large eddy simulation (LES) studies on a similar bend. Both

authors discuss the formation of various cells in the secondary flow patterns, such as the ones shown in Fig. 1. The flow

speed is quite low near the inside radius of the bend, and increases toward the center. The flow and pressure gradients

cause the formation of vortices in the flow, as well as increased turbulence levels.

Although the individual behavior of the flow fields and structural–acoustic transmission mechanisms of fluid-filled

pipes has been studied, insufficient work has been done on modeling the coupling of the fluctuating forces in the fluid

flow to the structural–acoustic response of the elbow, surrounding piping, and internal fluid. In this paper, the
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structural–acoustic response of an elbow due to internal turbulent flow is investigated. The analysis approach is based

on random structural–acoustic analysis procedures developed and applied previously in the aerospace (Powell, 1958;

Wilby, 1967; Jacobs et al., 1970), and nuclear (Au-Yang and Connelly, 1977) industries, and later improved and

formalized into the CHAMP (Combined HydroAcoustic Modeling Programs) procedure at ARL/Penn State (Hambric

et al., 2004, 2005). Computational fluid dynamics (CFD) analyses are used along with empirical formulas to estimate

wall pressure cross-spectra which are applied to finite element (FE) and boundary element (BE) models of the piping

and internal working fluid. The resulting structure- and fluid-borne power levels at the inlet and outlet of the elbow are

computed, along with their circumferential harmonic components. These power levels are effectively equivalent source

terms at the ‘‘ports’’ of the elbow, suitable for use in transfer matrix or SEA models.

Several conditions are considered, including variable pipe wall thickness, flow speed, and flow Reynolds number.

Scaling relationships are then derived to collapse the power spectra for each wavetype generated for each condition.

Empirical curve fits to the collapsed data are presented, which may be used by future investigators to estimate source

levels for geometrically similar pipes with different dimensions, materials, and flow conditions.
2. Problem definition and assumptions

Fig. 2 shows a straight inlet pipe, a 901 elbow with bend radius/nominal diameter ratio of 1.5 (typical of off the shelf

piping elbows), and a long straight discharge pipe. The flow entering the elbow region is assumed to be fully developed

turbulent pipe flow, with a Reynolds number (based on diameter) of at least 4000, so that no laminar or transition

regions exist anywhere in the pipe. The steady flow rate is assumed to be constant, and all unsteady Reynolds stresses

within the flow and resulting wall pressure fluctuations are assumed to be stationary and ergodic processes.

The structure is assumed to be continuous, with no structural impedance discontinuities at any joints or end

conditions. This assumption essentially dictates smooth, continuous, homogeneous physical and material properties

throughout the elbow. In the future, discontinuities such as flanges may be considered. These sorts of discontinuities

lead to structural–acoustic acceptance functions for a wavenumber range of the turbulent wall pressure fluctuations not

considered in this study.

We also assume an important relationship between the flow speed and structural wavespeeds. Namely, the ratio of

fluid to structural wavespeeds is assumed to be small, such that the wavenumber ratio k/kco0.1 (where kc is the

convective wavenumber of the flow, o/Uc, where o is radial frequency, and Uc is convective velocity). This assumption

allows us to use a computationally efficient cross-spectral density model (described in Section 3.2.2) to simulate the

spatial coherence of the pressure fluctuations. This assumption is valid for many practical conditions, particularly for

heavy, slow moving working fluids.

We analyze several combinations of flow and structural parameters so that scaling of the power injected into various

wavetypes may be attempted. CFD analyses at ReD of 2� 106 and 20� 106 were performed. The data from the analyses

may be scaled to different pipe sizes, flow speeds, and fluid properties. We set the fluid properties to those of water for
3.26“ or 3”
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Fig. 2. TBL excited piping system with 901 elbow, inlet at lower right, discharge at upper left.



ARTICLE IN PRESS
S.A. Hambric et al. / Journal of Fluids and Structures 26 (2010) 121–147 125
all studies presented here, and consider flow speeds ranging from 21 to 105 m/s. Finally, two pipe sizes are analyzed:

Schedules 10 and 40 steel 76.2 mm (3 in) pipe.
3. Procedure for estimating power source levels

3.1. Champ approach

Fig. 3 shows a schematic of a pipe section excited by turbulent boundary layer (TBL) flow, which varies significantly

over the body. Following the definitions of Strawderman (1969), the vibration response at any point on a structure is

found by integrating over the loaded region:

viðx; tÞ ¼

Z
D1

Z
D3

Z
t

pðD1;D3; t� tÞhiðx; x
0; tÞdD1 dD3 dt; ð1Þ

where viðx; tÞ is a velocity response in direction i at time t, x is a vector in space defining the response location, and t is
the time delay between t and a future time t0. The loaded region is represented by a surface parameterized by

coordinates D1 and D3. The impulse response function hiðx; x
0; t; t0Þ ¼ viðx; tÞ when pðD1;D3; tÞ ¼ dðx� x0Þdðt� t0Þ, where

d denotes the Dirac delta function and x0 is a vector in space defining the location at parametric coordinates (D1, D3).

Note that the response location x need not lie within the forced region. For example, the response location might be at a

downstream section of pipe, or at a pipe support.

Usually it is acceptable to assume that viðx; tÞ has a negligible effect on p(D1,D3,t�t), so that p(D1,D3,t�t) is estimated

assuming ‘‘blocked’’ boundary conditions, e.g., the fluid flows over a rigid surface. When this assumption is made,

p(D1,D3,t�t) may be computed using CFD analysis of flow over a stationary grid of points, and hiðx; x
0; tÞ may be

computed using numerical techniques like finite elements and boundary elements.

For uncoupled, ‘‘blocked’’ response, the cross-correlation of the vibration response between points x1 and x2 and

times t1 and t2 is defined as

Rvvðx1; x2; t1; t2Þ ¼

Z
x01

Z
x02

Z
t1

Z
t2
E pðx0 1; t1 � t1Þpðx02; t2 � t2Þ
� �

hðx1; x0 1; t1Þhðx2; x0 2; t2Þdx0 1 dx0 2 dt1 dt2; ð2Þ

where E[ ] denotes the expected value. The expected value of the pressures in Eq. (2) is the cross-correlation of the

pressure field, so that the cross-correlation of the vibration response may be re-written as

Rvvðx1; x2; t1; t2Þ ¼

Z
x01

Z
x02

Z
t1

Z
t2

Rppðx
0
1; x
0
2; t1 � t1; t2 � t2Þhðx1; x0 1; t1Þhðx2; x0 2; t2Þdx0 1 dx0 2 dt1 dt2: ð3Þ
1(p Δ Δ τ−

( , )iv x t
x

x′

Origin

Δ3
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Fig. 3. Schematic of pipe section excited by TBL flow.
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Assuming the pressure cross-correlation is statistically stationary over time, Eq. (3) may be transformed from time to

frequency, and the cross-power spectral density (CSD) of velocity is defined as

Gvvðx1; x2;oÞ ¼
Z

x0 1

Z
x0 2

H�ðx1; x
0
1;oÞGppðx

0
1; x
0
2;oÞHðx2; x

0
2;oÞdx0 1 dx0 2; ð4Þ

where Hðx1; x
0
1;oÞ ¼

R1
�1

hðx1; x
0
1; tÞe

iotdt corresponds to the velocity response at point x1 due to a sinusoidal excitation

at frequency o at point x01, commonly denoted a frequency response function (FRF). FRF functions may be generated

from analytic or numerical (FE/BE) models, and from measurements. Gppðx
0
1; x
0
2;oÞ is the one-sided cross-spectral

density of pressure, defined by

Gppðx1
0

; x2
0

;oÞ ¼
1

p

Z1
�1

Rppðx1
0

; x2
0

; tÞeiotdt: ð5Þ

Note that we assume a statistically stationary, ergodic flow field, but not a homogenous one. When calculations are

performed for cyclic frequencies f,

Gppðf Þ ¼ 2pGppðoÞ: ð6Þ

In practice, the integrations over space in Eq. (4) are replaced with discretized summations, such that

Gvvðx1; x2;oÞ ¼
XN

k ¼ 1

XN

l ¼ 1

H�ðx1; x
0
1;oÞGppðx1

0

; x2
0

;oÞHðx2; x2
0

;oÞ: ð7Þ

These summations are described in detail as multiple input multiple output (MIMO) problems by Bendat and Piersol

(2000).

3.1.1. Modal forcing and response

In CHAMP, the CSDs of vibration are computed using modal, rather than physical FRFs. Assuming a time-

harmonic dependence of eiot, the modal velocity frequency response function matrix h(o) is defined as

hðoÞ ¼ io �o2mþ iobþ kþ zðoÞ þ cðoÞ
� ��1

; ð8Þ

where o is the analysis frequency, k, b, m, z(o), and c(o) are the modal stiffness, damping, mass, fluid-loading, and

attached impedance matrices, defined as uTMu, uTBu, uTKu, uTZ(o)u, and uTC(o)u where u is a matrix of the

structural mode shapes jm in the absence of fluid-loading effects and M, B, K, Z(o), and C(o) are the mass, damping,

stiffness, fluid-loading, and attached impedance matrices in physical coordinates. K and k include structural damping

effects, and are therefore complex. The mode shapes are assumed to be normalized by the square root of the modal, or

generalized masses, such that m is the identity matrix and the diagonal values of k correspond to the eigenvalues o2
m.

Therefore, the terms in the modal FRF matrix h(o) have the units (velocity)(mass)/(force).

3.1.2. Structural and acoustic coupling matrices

C(o) is a complex matrix containing the stiffness, damping, and mass of any surrounding structural–acoustic systems

attached to points on the main, or master structure(s). For example, a numerical tool could be used to generate mode

shapes and modal matrices of a pipe elbow, used to populate the m, b, k, and u matrices, while an analytic tool could

generate impedances of a semi-infinite pipe connected to the ends of the elbow. The semi-infinite pipe impedances would

be included in C(o), and converted into modal impedances in c(o).
The fluid loading matrices Z(o) and z(o) are generated using Koopmann and Fahnline’s lumped parameter BE

approach (Koopmann and Fahnline, 1996; Koopmann and Fahnline, 1997, 2009), and include mass loading (reactive)

and damping (resistive, related to sound power radiation) terms. A summary of the unique characteristics of our

formulation follows. First, the acoustic equations are written in terms of the elemental variables volume velocity and

average pressure. This forces the solution to converge as a function of acoustic element mesh density. Second, the so-

called ‘‘tripole sources’’ are used to eliminate nonuniqueness difficulties, following the ideas of Hwang and Chang

(1991). Also, thin plate-like elements that deform only in bending are represented acoustically using dipole sources in

the same manner as in the papers by Martinez (1990) and Wu (1995). Fourth, great care has been taken to ensure that
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the singular fields are integrated correctly over the boundary surface. To do this, we make extensive use of the semi-

analytical integration scheme originally described by Engbloom and Nelson (1975) and developed further by a number

of researchers (Duong, 1980; Hayami and Brebbia, 1987; Hayami and Matsumoto, 1994; Sgard et al., 1994). Fifth, we

construct the acoustic element mesh by grouping structural elements together into larger acoustic elements. This allows

us to adjust the structural and acoustic meshes to properly resolve both the structural and acoustic waves without

overly refining the acoustic mesh. Finally, because modal coupling matrices are slowly varying functions of frequency,

they are interpolated from matrices calculated at sparse intervals over the frequency band of interest (Fahnline, 2000).

This speeds up the computations immensely because the coupling matrix can be interpolated much faster than it can be

directly calculated.

The fluid loading matrix Z(o) is partitioned into wetted regions surrounding individual components, and each

partition is computed separately using block solvers. To couple individual structures via fluid-loading, the mode shapes

of the structures would be specified at locations corresponding to the boundary element representation. Eq. (8)

therefore allows for structural and fluid coupling of multiple structures.
3.1.3. Velocity response

To compute velocities V(o) due to a deterministic applied force vector F(o),

V ðoÞ ¼HrpðoÞFðoÞ ¼ ½urphðoÞufp
T�F ðoÞ ¼urp½hðoÞf ðoÞ� ¼urpcðoÞ; ð9Þ

where Hrp(o) (equal to ½urphðoÞu
T
fp�) is the frequency response function matrix (in physical coordinates, with entries

equal to velocity/force) with entries at response points ‘‘rp’’, urp are the mode shapes at the response points ‘‘rp’’, ufp are

the mode shapes at the forced points ‘fp’’, f(o) is the vector of generalized, or modal forces, and c(o) (equal to

[h(o)f(o)]) is the vector of modal amplitudes. Note that the response points need not be within the forced region of the

structure.

The cross-power spectral density matrix of velocities at the response points is

GVrpVrp
ðoÞ ¼ 2 lim

T-1

1

T
E VrpðoÞVrp

HðoÞ
� �

; ð10Þ

where E[ ] is the expected value operator and the ‘‘H’’ superscript denotes the transpose and complex conjugate

operations. Using some of the relations in Eq. (9), Eq. (10) may be expanded to

GVrpVrp
ðoÞ ¼ 2 lim

T-1

1

T
E urphðoÞu

T
fpF ðoÞ urphðoÞu

T
fpFðoÞ

n oH
� �

¼ 2 lim
T-1

1

T
E urphðoÞu

T
fpF ðoÞFH ðoÞu�fph

HðoÞuH
rp

h i
¼urphðoÞu

T
fpGFF ðoÞu�fph

HðoÞuH
rp;

ð11Þ

where GFF(o) is the cross-power spectral density matrix of applied forces (in physical coordinates), and n denotes

complex conjugate. GFF(o) may represent any form of distributed force, either deterministic or random. Eq. (11) is

equivalent to Eq. (7), but in matrix form and based on modal, rather than physical, FRFs.
3.1.4. Generalized force cross-power spectral density matrices

Often the flow-induced fluctuating forces acting on structures have characteristic length scales much smaller than the

wavelengths of the vibrations within the structural materials. In such cases, it is convenient to define a CSD matrix of

generalized applied forces, where the CSD matrix of applied forces in physical coordinates is pre- and post-multiplied

by a modal basis set defined over the loaded points f:

Gff ðoÞ ¼ ûT
fpGFF ðoÞû�fp: ð12Þ

Since in most cases the number of physical coordinates in a model far exceeds the number of modes used in a

solution, Gff(o) is usually of order much smaller than GFF(o), greatly reducing computational resource requirements.

Also, if the spatial resolution of the mode shapes ufp is insufficient to resolve any fine-scale forces within GFF(o), more

refined mode shapes ûfp may be generated by interpolating ufp using spline functions. Therefore, Gff(o) may be

computed with accuracy without requiring excessive discretization of the structural–acoustic model (provided there is

enough spatial resolution in ufp such that the interpolated ûfp are accurate).
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3.1.5. Velocity spectra

To compute the velocity CSD matrix at all response points rp:

GVrpVrp
ðoÞ ¼urp½hðoÞGff ðoÞhHðoÞ�uH

rp ¼urpGccðoÞuH
rp; ð13Þ

where Gcc(o) (equal to [h(o)Gff(o)h
H(o)]) is the CSD matrix of the mass-normalized modal amplitudes

due to the applied force field. The terms in Gcc(o) have the units: (mass)(length)2/(time)2/Hz=(mass)(length)2/(time).

To compute displacement or acceleration spectra, the velocity CSD matrix is simply divided or multiplied by

factors of io. For large problems, Eq. (13) represents an extremely efficient, compact approach to computing

auto- and cross-power spectral densities at arrays of response points. Gff(o), h(o), and Gcc(o) are all of

order M�M, where M is the number of modes included in the solution. The only vectors in physical coordinates

are the mode shapes urp.

In restrictive cases, Gcc(o) is diagonal, implying no modal cross-coupling (the off diagonal entries in Gcc(o) are 0).
This is only true in lightly damped systems, with widely spaced modes, and with negligible fluid-loading Z(o). Early
analysis approaches (Powell, 1958, Wilby, 1967, Jacobs et al., 1970; Au-Yang and Connelly, 1977) assumed negligible

modal cross-coupling, along with homogeneous applied pressure fields. All modal cross-coupling terms are considered

in the approach described here, however, and inhomogenous pressure fields, like those within fluid-filled piping elbows,

are accounted for properly.

3.2. TBL flow excitation

Wall pressure fluctuations beneath turbulent boundary layers are partially correlated over space. Assuming a

temporally stationary process, the cross-spectral density pressure excitation function Gpipj
ðoÞ may be separated into an

averaged autospectral density function jppðoÞ and a normalized cross-spectral density function G(D1,D3,o) between the

loaded points i and j:

Gpipj
ðoÞ ¼jppðoÞGðD1;D3;oÞ ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpipi
ðoÞjpj pj

ðoÞ
q

GðD1;D3;oÞ; ð14Þ

where jppðoÞ is approximated by the geometric mean of jpipi
ðoÞ and jpjpj

ðoÞ and D1 and D3 are the streamwise and

spanwise separation distances between points i and j.Gpipj
ðoÞ is multiplied by the incremental areas at points i and j to

generate the entries of GFF(o).
Many investigators have proposed empirical models of jpp(o) and G(D1,D3,o) for TBL flow fields with zero mean

pressure gradient [see Hwang et al. (2003, 2009), Graham (1997) for summaries of some of the more popular models].

The models are effectively curve fits of measured data for geometrically similar flow fields, where the data are collapsed

on the so-called inner, outer, or mixed flow variables. While the empirical models for wall pressure autospectra work

well for uniform flows with no mean pressure gradients, they should not be used for complex flows like those within and

downstream of piping elbows. Therefore, we apply a computational technique to calculate the wall pressure

autospectra, and combine it with an empirical representation of G(D1,D3,o).

3.2.1. Autospectra

The turbulent flow throughout the elbowed pipe was computed using CFD RANS with a Menter k � o� SST

turbulence model at two Reynolds numbers (based on pipe diameter): 2� 106, and 2� 107. This range of Reynolds

numbers encompasses a wide range of flow speeds, pipe diameters, and viscosities. The CFD grid was sublayer-resolved

to a dimensionless distance y+ of 1 to capture small length scales in the flow turbulence and corresponding mid- to high-

frequency content in the wall pressure fluctuations. Using the TBL forcing function (TBLFF) methods described by

Peltier and Hambric (2007), the turbulence and velocity distributions through the flow profiles were integrated to

compute autospectra of the wall pressure fluctuations. In Hambric et al. (2003), similar calculations for a slightly

different elbow (and lower Reynolds number flow) were validated against measured data, particularly in regions where

the flow is subjected to adverse and favorable pressure gradients.

The estimated wall pressure autospectra over the full elbowed pipe are shown in Fig. 4 for low frequencies. The

contour levels are non-dimensionalized using outer flow variables (displacement thickness dn and bulk velocity Uo), and

plotted at a low dimensionless frequency (odn/Uo) of 0.1. As shown in Fig. 5, the dimensionless pressure spectra at the

inlet generally match those of similar flows through straight pipes reported previously (Keith et al., 1992) for both outer

and mixed variable scaling, providing additional confidence in the forcing function simulation procedure. However, at

higher dimensionless frequencies (odn/Uo42), the simulated pressure levels exceed those measured previously [the

measured pressures include the usual Corcos corrections for sensor surface area attenuation effects Corcos (1963)].

Earlier TBLFF simulations of wall pressure autospectra are also biased slightly high at higher frequencies, particularly
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Fig. 4. (a) Wall pressure distribution in TBL-excited piping system with 901 elbow, inlet at lower right, discharge at upper left; (b) wall
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odn/Uo=0.1, ReD=2� 106.
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for flows with favorable pressure gradients. We address this high frequency bias further when presenting our final

results later in this paper.

Fig. 4 shows that the pressure levels on and downstream of the outer elbow surface are significantly higher than those

within the inlet, particularly along the outer surface. The increase in fluctuating pressure is caused by gradients

introduced into the flow by the elbow, and by corresponding increases in turbulence intensity. We note that the effects

of the elbow on wall pressure amplitude continue well downstream of the elbow. Therefore, we consider the wall

pressure fluctuations which span the elbow itself, along with the excitation one diameter upstream and four diameters

downstream of the elbow joints.

Increasing Reynolds number generally decreases scaled (dimensionless) wall pressure fluctuation amplitudes

(along with other related parameters, like scaled wall shear stress and scaled friction velocity). The CFD

RANS/TBLFF simulations of wall pressure autospectral amplitudes over the elbow (and one diameter

upstream and four diameters upstream of the elbow) are compared for ReD of 2� 106, and 2� 107 and

scaled on outer variables in Fig. 6. As expected, the scaled wall pressure levels decrease slightly with increasing

Reynolds number.
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3.2.2. Cross-spectra

Since the TBL wall pressures are random over space, a cross-spectral model for G(D1,D3,o) is required to complete

the definition of the loading function GFF(o). G(D1,D3,o) may be viewed as a normalized cross-spectral function of the

fluctuating wall pressures, such that

GðD1;D3;oÞ ¼
1

2p

Z1
�1

rðD1;D3; tÞeiotdt; ð15Þ
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where r represents the normalized cross-covariance of the fluctuating pressure field (assumed locally homogeneous) and

G depends only on frequency and the separation vector (D1,D3) between points i and j in the plane of the flow. Several

investigators have assumed that G(D1,D3,o) may be separable in the streamwise and spanwise flow directions, including

Corcos (1963), who proposed the well-known model:

GðD1;D3;oÞ ¼AðoD1=UcÞBðoD3=UcÞ; ð16Þ

where Uc is the average convection velocity of the flow, which is some fraction of the free stream velocity Uo.

The convection velocity may be approximated using the empirical formula from Bull (1967) as a function of o, Uo,

and dn:

Uc ffi Uoð0:59þ 0:30e�0:89od
�=Uo Þ: ð17Þ

Corcos postulated that the functions A and B may be represented as an exponentially decaying oscillating function in

the flow direction and a simple exponentially decaying function in the cross-flow direction:

AðoD1=UcÞ ¼ e�a19oD1=Uc9eioD1=Uc ; and BðoD3=UcÞ ¼ e�a39oD3=Uc9; ð18a; bÞ

where a1 and a3 are decay constants in the streamwise and cross-flow directions, respectively. The decay terms may be

viewed as separation distances D normalized by the effective correlation lengths of the wall pressures, Uc/oa.
The oscillating term eioD1=Uc represents the pressure pulsations convecting over the surface. However, for low speed

flows the bending waves in the excited structure are so large with respect to the convective pressure fluctuations that the

oscillating term may be ignored (Hambric et al., 2003, 2004). In these cases, the structure acts as a filter, rejecting the

convective excitation. The remaining portion of the excitation field G(D1,D3,o) is termed the ‘‘low wavenumber region’’,

which coincides with the structural vibration wavenumbers.

Eq. (18) usually overestimates the low-wavenumber region of the TBL wall pressures. Ko (1991) and Hwang et al.

(2003) have evaluated a modification to the Corcos model, where

AðoD1=UcÞ ¼ 1þ a1 oD1=Uc

�� ��� 	
e�a19oD1=Uc9eioD1=Uc : ð19Þ

Pre-multiplying the original Corcos A function by 1þ a1 oD1=Uc

�� ��� 	
shifts more of the energy in the wall pressure

field into the convective region, reducing pressure amplitudes in the low-wavenumber region.

To remove the convective terms from Eq. (19), Hwang transforms the equation into wavenumber–frequency space,

truncates the resulting spectrum at a cutoff wavenumber kp, and inverse transforms the result back into physical

coordinates. The result,

GðD1;D3;oÞ ¼
2a31
p2a3


 �
kp

kc


 �2

2p
J1ðkp Dj jÞ

kp Dj j


 �
; ð20Þ

where D is the separation vector between loaded points and kc is o/Uc, may be readily applied to finite element models.

For the smooth walls in the examples considered here, we set a1 to 0.1, and a2 to 0.7. However, note that a1 can increase

significantly for flow over rough walls (Blake, 1970), reducing the streamwise correlation lengths, and increasing the

low-wavenumber levels.

Fig. 7 shows examples of the Hwang low-wavenumber forcing function in dimensionless wavenumber space (left) and

in physical coordinates (right) relative to a reference point on the pipe. The model only includes low-wavenumber terms

up to a dimensionless wavenumber of kpUc/o. We choose kp=40 based on our assumption that k/kco0.1. The low-

wavenumber model, when exercised with an appropriate kp,
1 leads to oscillations in the pressure excitation that are long

with respect to the structural dimensions, as shown in Fig. 7. Also, there is no frequency dependence in the oscillating

term of the model (there is frequency dependence in its amplitude, however, based on kc and the autospectrum). Finally,

leakage effects due to truncating the forcing functions at the ends of the pipes, which can be substantial when including

high-wavenumber convective terms, are minimal with the low-wavenumber model.

3.2.3. Boundary layer edge velocities and displacement thicknesses

To use Bull’s approximation for convection velocity, the local free-stream velocity and boundary layer displacement

thickness are required. For flat plate boundary layer flow, these quantities may be estimated with reasonable accuracy
1A large kp may be chosen, but would not improve model accuracy. Large kp values would decrease the oscillation lengths in the J1
term, increasing the mesh density requirements of the underlying structure. kp should therefore be chosen large enough to encompass

the wavenumber content of the structural vibrations, but no larger.
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from the CFD solutions. For straight pipe flow, the free stream velocity is simply that at the pipe center, and the

boundary layer displacement thickness can be estimated as a fraction of the pipe radius. For the flow fields within and

downstream of the elbow, however, the quantities are not easily defined.

We apply a technique based on Menter’s (1992, 1994) blending function, which is used to define transition regions

between two-layer turbulence models, to find automatically the localized boundary layer edges throughout the pipe

flow, along with approximate boundary layer thicknesses. We assume the location of the transition region defines the

effective boundary layer limit, and therefore the equivalent freestream, or ‘‘edge’’ velocity. Appendix A provides a

detailed description of the procedure.

Boundary layer displacement thickness is defined as the distance by which the solid boundary would have to be

displaced in a frictionless flow to give the same mass flow rate deficit as exists in the boundary layer, so

d� ¼
Z 1
0

1�
u

Uedge


 �
dy �

Z d

0

1�
u

Uedge


 �
dy; ð21Þ

where y is the distance normal to the wall, u the local component of the velocity tangential to the wall, Uedge the edge

velocity, and d the disturbance thickness, usually defined as the distance from the surface to the point where the velocity

is within 1% of the edge velocity.

Figs. 8 and 9 show the inferred displacement thickness and free stream velocity distributions over the pipe elbow

at ReD=2� 106. The displacement thickness of the inflow (fully developed straight pipe flow) is about 1/9th of the diameter,

and decreases within and downstream of the elbow. The boundary layer edge velocity is about 20% higher than the

bulk velocity at the elbow inlet, and decreases on the outer elbow surface, and on the inner pipe surface downstream of the

elbow.
3.3. Structural–acoustic response of finite structure and fluid regions

3.3.1. FE model

The motion of waves propagating along a pipe can be described as a series summation over all circumferential

harmonics, where

wðy; z; tÞ ¼
X1
n ¼ 1

Wn cosðnyÞ þ
X1
n ¼ 1

Vn sinðnyÞ

 !
e�ikzzþiot: ð22Þ
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Fig. 8. Approximate displacement thickness over excited region (one diameter upstream and four diameters downstream of elbow),

normalized by diameter, ReD=2� 106.

Fig. 9. Approximate boundary layer edge velocity over excited region (one diameter upstream and four diameters downstream of

elbow), normalized by bulk velocity, ReD=2� 106.
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As various circumferential harmonics n cut on with increasing frequency, the vibrations of the wall become more

complex. For the pipes and frequencies considered here, n is limited to 3.

An FE model of the piping walls was constructed using shell elements, which represent both plate and membrane

waves, including their coupling through the wall curvature. The model is used for analyses of both the Schedule 10

(3.05 mm [0.12 in] wall thickness) and Schedule 40 (5.49 mm [0.216 in] wall thickness) pipes. Based on the CFD-

simulated wall pressures, a section of the pipe extending one diameter upstream and four diameters downstream of the

elbows is modeled, as shown in Fig. 10. Models of thin, rigid, massless pistons were added to the inlet and discharge of

the truncated pipe. The pistons are used to couple a boundary element model of the internal fluid acoustic impedance to

the walls of the structural FE model and to the impedances of the upstream and downstream fluid columns.

Normal modes for the Schedules 10 and 40 truncated pipes were computed for frequencies of resonance up to 8 kHz.

75 modes were extracted for the Schedule 10 piping and 51 for the Schedule 40 piping. Eight rigid body modes were

included in each of the mode sets. Table 1 lists the cut-on frequencies for n=2 and 3 circumferential mode orders for

the piping. The mode sets also include beam (n=1) modes, and torsional modes of the respective legs. No purely axial

modes were found below 8 kHz for either pipe, but axial motion of both the inlet and discharge legs is observed in many

of the flexural pipe modes. Fig. 11 shows how bending motion in one of the legs couples to torsional or axial motion in

the other leg. This means that the pressures induced by the TBL flow, which are normal to the walls, will cause flexural,

as well as axial and torsional motion in the legs upstream and downstream of the elbow.
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Table 1

FE cuton frequencies (Hz) for Schedules 10 and 40 steel 3 in piping.

n=2 n=3

Schedule 10 1022 2943

Schedule 40 1932 5641

Torsion
n=1 bending

Massless pistons
not coupled to structure

n=1
bending

axial

Massless pistons
not coupled to structure

Fig. 11. In-vacuo FE modes of loaded region of Schedule 10.3 in steel pipe with 901 elbow; n=1 out-of-plane bending coupled to

torsion in inlet (top) and n=1 in-plane bending coupled to axial motion in outlet (bottom).
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3.3.2. BE model

A BE model of the fluid within the loaded region of the piping elbow was generated with the lumped parameter

software POWER (Fahnline and Koopmann, 1996, 1997; Koopmann and Fahnline, 1996; Fahnline, 2009). The BE

model was linked not only to the structural walls, but also to the rigid massless pistons at the ends of the pipe. A slip

condition between the pistons and the elbow inlet and outlet is enforced, such that the pistons only move in the
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direction of plane wave propagation in the fluid. This approach allows structural wall motion to couple to

the pistons via the BE fluid model. If the pistons are also connected to external fluid impedances, such as those

within the fluid in connected piping, or an infinite baffled or unbaffled body of fluid, they can radiate sound power.

This will be demonstrated later in the results section, where acoustic sound power levels are compared with structure-

borne sound.

3.4. Semi-infinite structure and fluid regions

The ends of the loaded pipe region shown in Fig. 10 are coupled to impedances of structural and acoustic wavetypes

in semi-infinite piping and fluid. For frequencies below 5 kHz, the following waves can propagate in Schedules 10 and

40 76.2 mm (3 in) piping: (i) axial (n=0), (ii) torsional (n=0), (iii) flexural (n=1, 2, and 3), and (iv) fluid (n=0, or plane-

waves),where flexural waves propagate along two planes – in and out of the plane of the elbow. The infinite impedances

draw fluid- and structure-borne powers away from both ends of the elbow.

The impedances of the axial and fluid waves (n=0) in a semi-infinite pipe are computed easily as

Z ¼ rcA; ð23Þ

where r is mass density, c the speed of sound of the wavetype, and A the area of the cross-section (of the fluid or

structure). The axial waves in the pipe walls propagate at a sound speed of
ffiffiffiffiffiffiffiffiffiffiffi
E=rs

p
, where E is Young’s modulus and rs

is structural density. For the fluid waves, we assume an acoustic wavespeed co in water of 1500 m/s and a mass density

ro of 1025 kg/m3.

The semi-infinite impedance of torsional waves in pipe walls is

Ztorsional ¼ rsJcs=a2; ð24Þ

where J is the polar moment of inertia of the cross-section, cs the shear wavespeed of the wall material (
ffiffiffiffiffiffiffiffiffiffiffi
G=rs

p
), G shear

modulus, and a the mean radius of the wall.

The semi-infinite impedances of the bending waves in pipes are not computed as easily as those of axial and torsional

waves. At low frequencies, semi-infinite beam impedances represent the n=1 flexural impedances of the pipes, where

Zbeam ¼
1
2
rsAscBð1þ iÞ; ð25Þ

where cB is the bending wavespeed in a beam. The rotational, or moment impedance of n=1 flexural waves is k2
BZ�beam,

where ‘‘n’’ denotes the complex conjugate.

At and above the cut-on frequency of lobar (n41) modes in the piping walls, the semi-infinite flexural impedances

cannot be computed in closed form. The wave transmission line (WTL) modeling approach described by Stokes et al.

(2001) may be used to compute the flexural (and axial and torsional) impedances based on dispersion relationships

between wavetypes. The dispersion relationships are based on the Donnell–Mushtari thin shell theory augmented with a

Flugge–Lur’ye–Byrne modifier to represent thick shell effects (Leissa, 1993). Internal acoustic fluid is coupled to the

shell by enforcing continuity of velocity at the wall.

The WTL may be used to generate complete frequency-dependent matrices of semi-infinite pipe impedances for each

circumferential harmonic of interest, including coupling between wavetypes. To couple the WTL impedances, which are

computed for individual circumferential harmonics, to the FE and BE models of the pipe, which are modeled in

physical coordinates, the FE mode shapes at the pipe ends must be decomposed into their circumferential harmonics for

radial, circumferential, and axial motion. The WTL impedances are then converted into modal coordinates and

included in the coupled FE/BE/WTL solution via the c(o) matrix in Eq. (8).

3.5. Power input to semi-infinite wave impedances

ARL/Penn State’s CHAMP approach is used to compute the structure- and fluid-borne power emanating from the

ends of the TBL-excited elbow. Recall from Section 3.1.1 that

hðoÞ ¼ io �o2m� iobþ kþ zðoÞ þ cðoÞ
� ��1

: ð26Þ

The internal fluid impedances and WTL semi-infinite pipe impedances are coupled to the pipe structure

via the z(o) and c(o) matrices, respectively. h(o) is then computed for all frequencies of interest (we choose 1/3-

octave band frequencies between 250 and 5000 Hz here). Once the modal response coefficients Gcc(o) are

known, the power injected into the attached semi-infinite pipe impedances may be computed as a summation over
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the modal coefficient matrices:

GPattached
ðoÞ ¼

XM
m ¼ 1

XM
n ¼ 1

Re½cmnðoÞ�Gcmcn
ðoÞ; ð27Þ

for each wavetype and circumferential harmonic, including both structural and acoustic waves.
4. Results

4.1. Unscaled power inputs to structural and fluid waves

The power transmitted into the pipes upstream and downstream of the elbow of the Schedule 10 76.2 mm (3 in)

water-filled steel pipe for TBL flow at a bulk velocity of 21 m/s and a ReD of 2� 106 is shown in Fig. 12. The in-plane

and out-of-plane (cosine and sine) components of n=1 flexural powers are similar, and are summed in the plots for

brevity. The power is highest at low frequencies, where the TBL wall pressure amplitudes are highest, and the

correlation lengths (Uc/oai) of the wall pressures are long (correlation lengths decrease with increasing frequency).

In general, the power levels in the flexural waves are higher than those in other wavetypes, since the TBL excitation

acts in the radial direction, directly exciting flexural motion. The flexural powers downstream of the elbow are

particularly high. The n=2 flexural waves have high power levels near their cut-on frequency (�800 Hz). The coupling

between structural wavetypes induced by the elbow (recall Fig. 11) is evident in the high power levels in axial waves at

low frequencies (especially in the upstream direction), and modest power levels in torsional waves at high frequencies.

At high frequencies, the power is partitioned nearly equally between structural wavetypes. Flexural motion of the pipe

walls also couples weakly to acoustic waves, leading to relatively low power levels in the entrained fluid.

CHAMP was exercised on other pipe and flow configurations. Fig. 13 compares the power in upstream waves for

flow velocities of 21 and 105 m/s for the Schedule 10 76.2 mm (3 in) water filled pipe. Flow speed has a strong effect on

power levels, since it has a correspondingly strong effect on the amplitudes of TBL wall pressure fluctuations.

Increasing flow speed also increases correlation lengths of the turbulence acting over the pipe surface.

The effects of increasing Reynolds number on power emanating upstream of the elbow of the water-filled Schedule 10

76.2 mm (3 in) pipe excited by turbulent flow traveling at 21 m/s are shown in Fig. 14. The increased Reynolds number

condition may be viewed as a decrease in kinematic viscosity. Since increasing Reynolds number decreases wall pressure

fluctuation amplitudes slightly, it also decreases power levels in all wavetypes. The Reynolds number effects are weak

compared with those of flow speed, however.

Finally, we evaluate the effects of piping wall thickness on power spectra in Fig. 15, which shows that power levels

decrease in Schedule 40 pipe (which has about double the wall thickness of Schedule 10 pipe). The increased wall
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Fig. 14. Simulated power emanating from TBL-excited Schedule 10 water-filled 76.2 mm (3 in) steel elbow, U=21 m/s, in upstream

direction, for ReD=2� 106 and 2� 107.
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thickness increases the impedance of the structure, reducing its acceptance of the TBL excitation energy. Also, the

increased wall thickness increases the cuton frequencies of the n=2 and 3 flexural waves. In fact, the n=3 modes in the

Schedule 40 pipe cut on at the upper limit of the analysis frequency range (5 kHz).
4.2. Scaling of power inputs

The power spectra for all wavetypes in the upstream direction are summarized in Fig. 16 for variable flow speed,

Reynolds number, and pipe wall thickness. For the spectra to be useful to the practicing engineer, some sort of scaling

must be used to collapse the data. Once a reasonable scaling is determined, empirical functions may be fit to the

collapsed data so that approximate power spectra may be inferred for other geometrically similar pipes (such as those

with larger diameters or different working fluids, for example).
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Fig. 15. Simulated power emanating from TBL-excited water-filled 76.2 mm (3 in) steel elbow, ReD=2� 106, U=21 m/s, in upstream

direction, for Schedule 10 and 40 pipe.
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The power in a given wavetype at a particular frequency is proportional to GFFHv/F , where GFF is the spectral density

of wall force fluctuations and Hv/F is the mobility of the wall (and connected structures and fluid). GFF is the product of

the wall pressure autospectrum and the regions over which the pressures are correlated. Therefore, parameters

proportional to the wall pressures, surface area, and structural–acoustic mobility are required to properly scale the

power spectra. Since perfect scaling of the results is not practical for a complex system, we offer instead an empirical

scaling approach based on dimensional and physical analysis of the fluid flow and piping.

Wall pressure autospectra may be scaled using different flow variables (Keith et al., 1992). Outer variables, which depend

on large-scale flow parameters, work best for the low-frequency range. Therefore, the outer variables Uo (bulk velocity), D

(pipe diameter), and ro (fluid mass density) are used to scale the wall pressures since high frequency wall pressure fluctuations

are not likely to be significant noise sources for TBL flow excitation. Wall pressure spectra are also scaled against a non-

dimensional frequency, in this case fD/Uo, which we will also use as a non-dimensional frequency for the power spectra. The

region of excitation is proportional to the pipe circumference pD and axial length of the elbow L, and also to the decay

coefficients a1 and a3 (which are included in the cross-correlation model in Eq.(20)). Finally, the fluctuating velocities, stresses,

and wall pressures in a wall-bounded turbulent flow field depend weakly on Reynolds number. The literature on turbulent flat

plate, channel, and pipe flow includes a range of Reynolds number dependencies (usually of wall shear stress or friction

velocity). For the RANS model used here, an exponent of 1/7th works well, and is within the range of values reported by

Burmeister (1993). Combining the wall pressure outer variable scaling, the (weak) Reynolds number dependence, and the

decay coefficients and excited region, the power is multiplied by the factor a3Re
1=7
D =ða31r

2
fluidU3

o D3
pipeL

2
elbowÞ.

To scale structural mobility, we use combinations of localized and semi-infinite mobilities. Consider that each

localized wall pressure source ‘‘sees’’ a combined impedance (inverse of mobility), consisting of local flexural

impedances and remote (at elbow ports) wavetype impedances. For example, local flexural waves in the wall couple to

torsional and axial semi-infinite waves at both the upstream and downstream ends. Also, local flexural waves in the wall

couple to internal fluid waves, which in turn couple to semi-infinite fluid columns attached to the upstream and

downstream ends. For our scaling, we therefore combine localized flexural impedances with semi-infinite impedances of

axial, torsional, and fluid waves, but use only flexural impedance to scale flexural powers. The parameters from the

infinite beam flexural, axial, and torsional impedances discussed previously are combined with the forcing function

parameters described above to complete the scaling of powers (note that we multiply power by impedance, which is the

same as dividing by mobility):

Gpowerscaled ðdBÞ ¼ 10log10Gpowerwavetype þ 10log10
X

ZwavetypeðsÞ

� 

a3Re

1=7
D =ða31r

2
fluidU3

o D3
pipeL

2
elbowÞ

h i
: ð28Þ

For flexural powers,
P

ZwavetypeðsÞ is simply the flexural impedance of an infinite beam (amplitude of Eq. (25), without

the factor of 1/2). For axial and torsional powers,
P

ZwavetypeðsÞ is the sum of the flexural impedance of an infinite beam

and semi-infinite axial (Eq. (23)) and torsional (Eq. (24)) waves. For acoustic powers, the flexural impedance is summed
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Fig. 16. Simulated power in n=1 flexural (top), axial (middle), and acoustic (bottom) waves emanating from TBL-excited water-filled

76.2 mm (3 in) steel elbows, in upstream direction, for two different flow speeds, pipe Schedules, and Reynolds numbers.
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with a portion of the acoustic impedance (Eq. (23)), whereX
ZwavetypeðsÞ ¼Zbeam þ ðrsAs=roAoÞ

2Zfluid: ð29Þ

The coupling factor between the pipe walls and internal fluid, ðrsAs=roAoÞ
2, is a low-order approximation. A more

rigorous, frequency and wavenumber dependent coupling factor is available in Stokes et al. (2001), but would be quite

difficult to apply to a general, simplified power scaling.

Fig. 17 shows the powers in flexural (n=1), axial (n=0), and acoustic (n=0) waves in the upstream direction, scaled

using Eq. (28) (the collapse and trends for other wavetypes, and in the downstream direction, are similar to those shown

in Fig. 17). Recall that the scaled power spectra are plotted against a dimensionless frequency fD/Uo. The scaled data
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Fig. 17. Empirical curve fits of scaled, simulated power in (a) n=1 flexural, (b) axial, and (c) acoustic waves emanating from TBL-

excited water-filled 76.2 mm (3 in) steel elbows, in the upstream direction, as a function of flow speed, pipe schedule, and Reynolds

number.
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range between 0.22ofD/Uoo22. The collapse of data is good, but not perfect (a perfect collapse using the simple

scaling described here is unlikely for a complex structure like an elbowed pipe). The flexural and axial power data have

different slopes over different frequency ranges, with a breakpoint at about fD/Uo=2.2. The flexural and axial powers

collapse better than the acoustic powers, where the acoustic power data has a discontinuity near fD/Uo=1. Figs. 5 and

6 show that the slopes of the TBL wall pressure autospectra also change between fD/Uo of 1 and 5, causing the

breakpoint in the slopes of the power spectra.
4.3. Empirical power input

The scaled power spectra may be used to infer empirical formulae for the spectral amplitudes of the power in each

wavetype, in both the upstream and downstream directions. Since the data all seem to change in slope at fD/Uo of about
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2.2, we form two-part functions:

PscaledðdBÞ ffi P1 �m110log10ð½fD=Uo�=0:1Þ; 0:14fD=Uoo2:2;

ffi P2 �m210log10ð½fD=Uo�=2:2Þ; fD=Uo42:2:
ð30Þ

To generate a power spectrum for any combination of flow and structural parameters, simply subtract

10log10
P

ZwavetypeðsÞa3Re
1=7
D =ða31r

2
fluidU3

o D3
pipeL

2
elbowÞ

h i
from Pscaled, and compute a dimensional frequency f by

multiplying fD/Uo by Uo/D.

Values for P1, P2, m1, and m2 are listed for each wavetype and direction in Table 2, and examples of the curve fits for

flexural (n=1), axial (n=0), and acoustic (n=0) powers in the downstream direction are shown in Fig. 17. The curves

are generally conservative, tending toward the upper data points. However, some of the data points are above the

curves. If more conservative estimates of the power spectra are required, the curves may be shifted upward by a few dB.

However, since the TBLFF wall pressure autospectra may be biased high at higher frequencies (see the discussion at the

end of Section 3.2.1), the curves above fD/Uo of 2.2 are likely already conservative.
5. Summary and conclusions

We have described a procedure which couples CFD and structural–acoustic models that may be used to compute the

structure- and fluid-borne powers emanating from the ends of TBL excited piping components. The procedure is

illustrated for a 901 piping elbow with a radius to diameter ratio of 1.5. Based on wall pressure fluctuations computed

from CFD RANS solutions, the TBL loading on the piping downstream of the elbow is high, so that an effective elbow

noise source includes several diameters of piping downstream of the elbow. The pipe walls are represented with finite

elements, and the internal fluid simulated with boundary elements. The fluid is coupled to the structural walls so that

excitation of the walls generates acoustic waves in the fluid. Semi-infinite impedances for all structural wavetypes and

acoustic waves based on WTL models are applied to the ends of the elbow, and power spectra in each wavetype are

computed using the CHAMP capability.

Powers in wavetypes upstream and downstream of the elbow are computed for Schedules 10 and 40 76.2 mm (3 in)

steel pipe filled with water at 21 and 105 m/s, and at ReD of 2� 106 and 2� 107. Since the power levels vary significantly

for the different parameter combinations, scaling relationships are used to collapse the simulated data, and empirical

curves are fit to the data. A set of empirical formulae are provided for the power spectra in all wavetypes, and may be

used to compute power spectra for geometrically similar 901 piping elbows using other combinations of flow and

structural parameters not considered here. The formulae, however, are based on the limited set of computations

reported here. In the future, additional configurations may be considered and used to refine the empirical curves.

Now that the procedure for computing powers emanating from piping components excited by distributed random

forces has been established, it may be used to estimate equivalent source strengths for any general shape excited by

distributed internal sources. The power inputs may be applied to wave-based (WTL) and transfer matrix based pipe

modeling approaches to estimate vibro-acoustic response elsewhere in a connected piping system, as well as to

Statistical Energy Analysis (SEA) models.
Table 2

Summary of constants for empirical curve fits to scaled power spectra for TBL-excited 901 elbow.

Wavetype, direction Power P1 (dB),

fD/U=0.1

Slope m1,

fD/Uo2.2

Power P2 (dB),

fD/U=2.2

Slope m2,

fD/U 42.2

Fluid, upstream �44 2.5 �77.6 4

Fluid, downstream �42 2.5 �75.6 4

Axial n=0, upstream �37 2 �63.8 4

Axial n=0, downstream �40 2 �66.8 4

Torsion n=0, upstream �48 1.5 �68.1 3.5

Torsion n=0, downstream �42 2 �68.8 3.5

Flexural n=1, upstream �42 2 �68.8 4

Flexural n=1, downstream �40 2 �66.8 4

Flexural n=2, upstream �38 2 �64.8 4

Flexural n=2, downstream �35 2 �61.8 4
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Several extensions to this work are possible. The results presented here are for a specific elbow radius to pipe diameter

ratio. Tighter and more gradual elbows could be considered in the future. Since in practice many pipes are connected by

large flanges, the scattering effects of the flanges could be considered. Including flange effects would likely require including

convective terms in the fluctuating forces acting on the walls (the convective terms are ignored in this study since they are

negligible). Also, the acoustic power induced by turbulence passing through mean velocity gradients in the core flow through

the elbow could be computed. Finally, other geometries, like U-bends and T-junctions could be modeled.
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Appendix A. Estimating effective edge velocities and displacement thicknesses in complex pipe flow profiles

Most empirical estimates of TBL wall pressure fluctuations are based on ideal flat plate, straight channel and straight

pipe flow measurements and therefore rely on quantities such as boundary layer displacement thickness and boundary

layer edge velocity. Boundary layer displacement thickness is defined as the distance by which the solid boundary would

have to be displaced in a frictionless flow to give the same mass flow rate deficit as exists in the boundary layer, so

d� ¼
Z 1
0

1�
u

U

� 

dy �

Z d

0

1�
u

U

� 

dy; ðA:1Þ

where y is the distance normal to the wall, u the component of the velocity tangential to the wall, U the freestream

velocity, and d the disturbance thickness, usually defined as the distance from the surface to the point where the velocity

is within 1% of the freestream velocity. For turbulent flow over a flat plate, it can be shown that dn=d/8 (Burmeister,

1993). The edge velocity is defined as Uedge=u(d).
These quantities are only well defined for flat plate (or at least external) flows, where there is a clearly defined edge

separating the boundary layer from the freestream. Quantities that are generally used to characterize duct flows, such as

hydraulic diameter and bulk velocity, are not sufficient to characterize spatial variations that occur along the length of

the duct. Therefore, a characteristic length and velocity is needed that can be used to correlate wall pressure fluctuations

with velocity profiles in arbitrary, three-dimensional and especially internal flow fields. We employ a blending function

in a two-layer turbulence model to use in this respect.

Menter’s blending function (1992, 1994), which is defined as

F1 ¼ tanhðarg41Þ; ðA:2Þ

is designed to equal 1.0 in the sublayer and log-layer and decrease to zero in the wake region of a shear layer. In

Eq. (A.2),

arg1 ¼min max

ffiffiffi
k

p
0:09oy

;
500n
y2o

 !
;

4rso2k

CD
koy2

" #
; ðA:3Þ

where

CD
ko ¼max 2rso2

1

o
@k

@xj

@o
@xj

; 10�20

 �

; ðA:4Þ

where so2 is the diffusion coefficient in the k–o-SST turbulence model. The term arg1 (and thus F1) goes to zero as

y-1, which is clear due to the 1/y or 1/y2 dependence of all three arguments in Equation (A.3). The first argument is

equal to the turbulent length scale, ‘¼
ffiffiffi
k

p
=ð0:09oÞ ¼ k

3=2
=e, divided by y. It is equal to 2.5 in the log-layer and goes to

zero towards the boundary layer edge. The second argument ensures that F1 is equal to one in the sublayer. Menter

points out that o is proportional to 1/y2 in the near wall region and proportional to 1/y in the log region, so 1/(oy2) is

constant near the surface and goes to zero in the log region. The third argument is ‘‘an additional safe guard against the

‘‘degenerate’’ solution of the original k–o model with small freestream values for o.’’
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A Reynolds-averaged Navier–Stokes solution using the Menter k � o�SST model was obtained for turbulent flow

over a flat plate at a Reynolds number (based on plate length) of ReL=4� 107 using a sublayer-resolved grid. Slug flow

was assumed at the plate leading edge and far-field values of k1 ¼ 1� 10�7 V2
1 and o1 ¼ 9V1=L (such that mTN/

m=0.45) were assumed at the inlet and at y/L=0.125. Profiles of the blending function, F1, were taken normal to the

wall and used to find the location (y99) where F1 first drops from 1.0 down to 0.99, which occurs in the wake region of

the boundary layer. Comparing this distance to the disturbance thickness of the boundary layer, it was found that

dE1.8y99, so under the assumption of turbulent flow, dnE(1.8/8)y99. Similarly, it was found that UedgeE1.1U(y99)(d).
Subsequently, a solution was obtained for turbulent flow through a 901 bend at Reynolds numbers (based on a pipe

diameter of 0.082805 m) of 2� 106 (water at 21 m/s). Profiles of velocity and F1 were taken normal to the pipe wall. At

each point, the distance y was measured from the surface to the point where F1=0.99, and this value of y was used to

determine dn and Uedge through the equations specified above.

Fig. 18 shows slices of the velocity magnitude extending downstream of the pipe bend. Fig. 19 shows a fully

developed velocity profile upstream of the pipe bend. For this profile, F1 maintains a nearly constant value of 1.0 across

the diameter of the pipe except for a slight dip near y=D/2. Since F1 never drops below the specified cut-off value of

0.99, y99 is specified as y99=0.5D and U99 is specified as U99=1.1 Vref. The yellow diamond in Fig. 19 marks this point.

Then

d� ¼ 1:8 y99=8
� 	

¼ 0:1125D¼ 0:00932 m; and Uedge ¼ 1:1 U99 ¼ 1:21 Vref ¼ 25:41m=s:

Fig. 20 shows a velocity profile near the exit of the computational domain, taken from y=901 to 2701 (i.e., extending

from bottom to top in Fig. 18). For this profile, F1 drops off rapidly toward zero for both inner and outer boundary

layers. The yellow diamonds in Fig. 20 mark y99 for both points. For the inner boundary layer (associated with y=901),

y99=0.275D, so

d� ¼ 1:8 y99=8
� 	

¼ 0:0618D¼ 0:00512 m;

and U99=1.04 Vref, so

Uedge ¼ 1:1 U99 ¼ 1:15 Vref ¼ 24:1m=s:

For the outer boundary layer (associated with y=2701), y99=0.0466D, so

d� ¼ 1:8 y99=8
� 	

¼ 0:0105D¼ 0:000869 m;
Fig. 18. Slices of velocity magnitude extending downstream of the pipe bend.
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Fig. 19. Velocity profile and corresponding profile of F1 in the fully developed region upstream of the pipe bend. Arrows denote the

upper and lower axes corresponding to the profiles.
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Fig. 20. Velocity profile and corresponding profile of F1 near the exit of the computational domain downstream of the pipe bend.

Arrows denote the upper and lower axes corresponding to the profiles.
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and U99=0.814 Vref, so

Uedge ¼ 1:1U99 ¼ 0:895Vref ¼ 18:8m=s:
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